定数係数非斉次2階線形方程式の 特殊解 を求めるのに 定数変化法 があるが クラメルの公式 が使われている方が式を覚えるのが楽でした。
目次
定数変化法
定数係数非斉次線形方程式
$$x”+px’+qx=r(t)$$
の特殊解は
$$x(t)=-x_1(t)\int_{}{}\frac{x_2(t)r(t)}{W(x_1,\ x_2)(t)}dt+x_2(t)\int_{}{}\frac{x_1(t)r(t)}{W(x_1,\ x_2)(t)}dt$$
である。
クラメルの公式
連立方程式
$$\left\{ \begin{array}{r} a_{11}x_1+a_{12}x_2=b_1 \\ a_{21}x_1+a_{22}x_2=b_2 \end{array} \right.$$
を行列を用いて表すと
$$\left( \begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right)\left( \begin{array}{c} x_1 \\ x_2 \end{array} \right)=\left( \begin{array}{c} b_1 \\ b_2 \end{array} \right)$$
の解は
$$x_1=\frac{\left| \begin{array}{cc} b_1 & a_{12} \\ b_2 & a_{22} \end{array} \right|}{\left|\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|},\ x_2=\frac{\left| \begin{array}{cc} a_{11} & b_1 \\ a_{21} & b_2\end{array} \right|}{\left|\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|}$$
特殊解 を求めるのに 定数変化法 より クラメルの公式
x”-x’=sint+2costの一般解(定数変化法)
\(x”-x’=sin\ t+2cos\ t\)の一般解の計算が複雑なので記事にしました。
x”-x’=sint+2cost を解くのに必要な道具
- 部分積分
- 定数変化法

x”-x’-6x=5tの一般解(定数変化法)
x”-x’-6x=5tの特殊解 を求めるのに必要な道具
- 定数変化法
- クラメルの公式 定数変化法
定数係数非斉次2階線形方程式の特殊解を求めるのに定数変化法があるが クラメルの公式 が使われてい方が式を覚えるのが楽でした。

x”-x’=sint+2costの一般解(クラメルの公式)
x”-x’=sint+2cost を解くのに必要な道具
- 部分積分
- 定数変化法クラメルの公式
定数係数非斉次2階線形方程式の特殊解を求めるのに定数変化法があるが クラメルの公式 が使われている方が式を覚えるのが楽でした。

検索しても計算過程が見つからない場合
検索しても計算過程が見つからない場合ココナラ を利用してみてはいかがでしょうか。
ココナラ 登録方法
会員登録しなくてもサービスの検索はできます。
サービスの購入・出品には会員登録が必要です。

スタディサプリ進路 社会人向け の 使い方

独学で大学数学の微分方程式を勉強しています!
- 1/sinxdxから1/tdtへの変形 トラクトリックス
- 1階非斉次線形微分方程式の一般解
- y’=(1+y)/sinxの解き方 変数分離形
- y’=(x^2-y^2)/2xyの解き方 同次形
- y’=2y/x-yの解き方 同次形
- dy/dx-(3/2)(y-a)^(1/3)=0 の一般解と、それらの解曲線の包絡線である特異解
- x=-e^2t∫3t^2e^(-2t)dt+te^2t∫3te^(-2t)dtの解き方 部分積分
- 特殊解を求めるのに 定数変化法 より クラメルの公式
- x”-x’=sint+2costの一般解(未定係数法)
- x”-2x’+5x=20cost, x(0)=x'(0)=0の解き方 初期値問題
- (t+2)x”-(2t+6)x’+(t+4)x=0 (x=e^t)の一般解 階数低下法
- (t^2+3t+4)x”+(t^2+t+1)x’-(2t+3)x=0 (x=e^(-t))の一般解 階数低下法
- 3つの関数の積の積分
- 4xy”+2y’+y=0の解き方(オイラーの微分方程式)
- 4xy”+2y’+y=0の解き方(フロベニウスの方法)
- x^2y”-2xy’+(x^2+2)y=0の解き方(フロベニウスの方法)
- 級数解法・フロベニウスの方法 使い分け
- x=0 で 等温境界条件 u(0,t)=uをみたし、 x=1 で 断熱境界条件 ux(1,t)=0をみたす解
- x=0 で 断熱境界条件 ux(0,t)=uをみたし、 x=1 で 等温境界条件 u(1,t)=0 をみたす解
- 4x^7y-28x^5y^3+28x^3y^5-4xy^7をr^nsinnθ,r^ncosnθの1次結合として表す。
- 4x^7y-28x^5y^3+28x^3y^5-4xy^7の最大値・最小値 ラプラシアン
- 独学で大学数学の積分因子を勉強しています!
- 完全微分形の一般解
- (x^2+3xy+2y^2)dy+(2x^2+3xy+y^2)dx=0の一般解 完全微分形
