複素数平面上における中心(1/4, i/4)半径1/(2√2)の円周上の点(1/5, (3i/5)における円の接線の方程式

複素数平面上における中心\(\left(\frac{1}{4},\ \frac{1}{4}i\right)半径\frac{1}{2\sqrt{2}}の円周上の点\left(\frac{1}{5},\ \frac{3}{5}i\right)\)における円の接線の方程式

数式がスマホで画面からはみ出る場合、横スクロールするかピンチインしてください。

複素数平面上における円の接線の方程式を求めるの必要な道具

  1. 複素数平面上における円の接線の方程式
  2. 複素数平面の直線の方程式の一般形

複素数平面上における円の接線の方程式

複素数平面上における中心α半径rの円周上の点βにおける円の接線の方程式

$$(\overline{\alpha}-\overline{\beta})z+(\alpha-\beta)\overline{z}-\alpha\overline{\alpha}+\beta\overline{\beta}+r^2=0$$

複素数平面の直線の方程式の一般形

$$\overline{\lambda}z-\lambda\overline{z}+\mu=0\ ただし、\muは純虚数$$

複素数平面上における中心\(\left(\frac{1}{4},\ \frac{1}{4}i\right)半径\frac{1}{2\sqrt{2}}の円周上の点\left(\frac{1}{5},\ \frac{3}{5}i\right)\)における円の接線の方程式

\((\overline{\alpha}-\overline{\beta})z+(\alpha-\beta)\overline{z}-\alpha\overline{\alpha}+\beta\overline{\beta}+r^2=0\)

$$\left(\left(\frac{1}{4}-\frac{1}{4}i\right)-\left(\frac{1}{5}-\frac{3}{5}i\right)\right)z+\left(\left(\frac{1}{4}+\frac{1}{4}i\right)-\left(\frac{1}{5}+\frac{3}{5}i\right)\right)\overline{z}-\frac{1}{8}+\frac{2}{5}+\frac{1}{8}=0$$

$$\left(\frac{5}{20}-\frac{4}{20}-\frac{5}{20}i+\frac{12}{20}i\right)z+\left(\frac{5}{20}-\frac{4}{20}+\frac{5}{20}i-\frac{12}{20}i\right)\overline{z}+\frac{2}{5}=0$$

$$\left(\frac{1}{20}+\frac{7}{20}i\right)z+\left(\frac{1}{20}-\frac{7}{20}i\right)\overline{z}+\frac{2}{5}=0\cdots①$$

複素数平面の直線の方程式の一般形

$$\left(-\frac{7}{20}+\frac{1}{20}i\right)z+\left(\frac{7}{20}+\frac{1}{20}i\right)\overline{z}+\frac{2}{5}i=0,\ \left(-\frac{7}{20}+\frac{1}{20}i\right)z-\left(-\frac{7}{20}-\frac{1}{20}i\right)\overline{z}+\frac{2}{5}i=0$$

複素数平面上における中心(1/4, i/4)半径1/(2√2)の円周上の点(1/5, (3i/5)における円の接線の方程式

参考文献

座標平面での円の接線の方程式

複素数平面の直線の方程式

$$\left(\frac{1}{20}+\frac{7}{20}i\right)z+\left(\frac{1}{20}-\frac{7}{20}i\right)\overline{z}+\frac{2}{5}=0\cdots①$$

①にz=x+yiを代入すると

$$\left(\frac{1}{20}+\frac{7}{20}i\right)(x+yi)+\left(\frac{1}{20}-\frac{7}{20}i\right)(x-yi)+\frac{2}{5}=0$$

$$\frac{1}{20}x-\frac{7}{20}y+\frac{1}{20}yi+\frac{7}{20}xi+\frac{1}{20}x-\frac{7}{20}y-\frac{1}{20}yi-\frac{7}{20}xi+\frac{2}{5}=0$$

$$\frac{2}{20}x-\frac{14}{20}y+\frac{2}{5}=0,\ 2x-14y+8=0,\ x-7y+4=0,\ 7y=x+4,\ y=\frac{1}{7}x+\frac{4}{7}$$

中心(1/4, 1/4)、半径1/2√2の円周上の点(1/5, 3/5)における接線の方程式

座標平面での円の接線の方程式を求めるのに必要な道具

座標平面で中心(a, b)半径rの円周上の点\((x_1,\ y_1)\)における接線の方程式

座標平面で中心(a, b)、半径rの円周上の点\((x_1,\ x_2)\)における接線の方程式

$$(x_1-a)(x-a)+(y_1-b)(y-b)=r^2$$

\(中心\left(\frac{1}{4}, \frac{1}{4}\right)、半径\frac{1}{2\sqrt{2}}の円周上の点\left(\frac{1}{5}, \frac{3}{5}\right)\)における接線の方程式

\((x_1-a)(x-a)+(y_1-b)(y-b)=r^2\)

$$\left(\frac{1}{5}-\frac{1}{4}\right)\left(x-\frac{1}{4}\right)+\left(\frac{3}{5}-\frac{1}{4}\right)\left(y-\frac{1}{4}\right)=\frac{1}{8}$$

$$\left(\frac{4}{20}-\frac{5}{20}\right)\left(x-\frac{1}{4}\right)+\left(\frac{12}{20}-\frac{5}{20}\right)\left(y-\frac{1}{4}\right)=\frac{1}{8}$$

$$-\frac{1}{20}x+\frac{1}{80}+\frac{7}{20}y-\frac{7}{80}=\frac{1}{8},\ -\frac{1}{20}x+\frac{7}{20}y-\frac{6}{80}-\frac{10}{80}=0,\ -\frac{1}{20}x+\frac{7}{20}y-\frac{16}{80}=0$$

$$-\frac{1}{20}x+\frac{7}{20}y-\frac{1}{5}=0,\ -x+7y-4=0,\ 7y=x+4,\ y=\frac{1}{7}x+\frac{4}{7}$$

中心(1/4, 1/4)、半径1/2√2の円周上の点(1/5, 3/5)における接線の方程式

独学で大学数学の解析入門を勉強しています!